

内燃机凸轮-滚轮-销轴接触的润滑分析

Lubrication analysis of cam-roller-pin in an internal combustion engine

Shuyi Li, Feng Guo, Guixiang Zhu, Shen Chao, Cheng Liu

Qingdao University of Technology
 Weichai Power Co. Ltd

Content

1. Background

- 2. Theoretical Analysis
 - 2.1 Mathematical Model
 - **2.2 Numerical Results**
- **3.** Conclusion

- ➤ A cam-roller unit is the core component of valvetrain systems of an internal combustion engine.
- ➤ The surface of the tribo-pair is easy to wear, which affects the working accuracy of valve mechanism and reduces the reliability and service life of an internal combustion engine.

1. Background

The tribological design of a cam-roller unit is a complicated and difficult task.

Lubrication

Materials

.

Friction and wear of a cam-roller unit

Machining precision

Surface engineering

Rotate speed

Surface characteristic

Type of lubricating

Supply of lubricating

Skidding of cam and roller

Skidding of cam and roller:

Cam and roller are in pure rolling state theoretically, but it is not so in practice

- Duffy et al. confirmed the existence of skidding between cam and roller through experiment(1993)
- Lee et al. pointed out that once the contact pair had skidding it would cause wear problem(1995)
- Khurram et al. experimentally studied the influence of oil viscosity on skidding(2016)
- Abdullah et al. pointed out that WPC treatment had a significant inhibition effect on skidding(2019)

Roller

7000

6000 5000

4000

3000

2000

Research objective:

D To establish the lubrication model of an cam-roller unit

To study the factors dominating roller skidding

2.1. Mathematical model

Cam-roller contact:

$$\frac{\partial}{\partial x} \left[\left[\left(\frac{\rho}{\eta} \right)_{e} h^{3} \frac{\partial p}{\partial x} \right] + \frac{\partial}{\partial y} \left[\left(\frac{\rho}{\eta} \right)_{e} h^{3} \frac{\partial p}{\partial y} \right] = 6u_{a} \frac{\partial \left(\rho_{a}^{*} h \right)}{\partial x} + 6u_{b} \frac{\partial \left(\rho_{b}^{*} h \right)}{\partial x} + 12 \frac{\partial \left(\rho_{e} h \right)}{\partial t} \right]$$

$$p(x_{\text{in}}, y) = p(x_{\text{out}}, y) = p(x, y_{\text{in}}) = p(x, y_{\text{out}})$$

$$p(x, y) \ge 0 \ (x_{\text{in}} \le x \le x_{\text{out}}, y_{\text{in}} \le y \le y_{\text{out}})$$

$$h(x, y, t) = h_0(t) + \frac{x^2}{2R} + \frac{(y \pm l/2)^2}{2R_d} f_\Delta + h_{td} \left[1 - \left(\frac{y}{l/2}\right)^2 \right] (1 - f_\Delta) + \frac{2}{\pi E'} \iint_{\Omega} \frac{p(x', y', t)}{\sqrt{(x - x')^2 + (y - y')^2}} dx' dy'$$

$$\eta^* = \eta_0 \exp\left\{ (A_1) \times \left[-1 + (1 + A_2 p)^{z_0} (A_3 / A_4)^{-s_0} \right] \right\} \qquad \eta = \eta^* \frac{\tau_e / \tau_0}{\sinh(\tau_e / \tau_0)}$$

Roller O Cam

2.1. Mathematical model

2.1. Mathematical model

□ Numerical calculation

The 11th International Conference of ICE Reliability Technology, Jinan, China, 17-19 Feb., 2023

Input parameters

2.2. Numerical Results

Parameters	Value
Length of roller (mm)	14
Middle length of roller (mm)	12
Inner radius of roller (mm)	16
Outer radius of roller (mm)	25.5
Radius gap (µm)	5
Elasticity modulus (GPa)	2.1
Pressure-viscosity coefficient (Pa ⁻¹)	2.2×10 ⁻⁸
Solid density (kg/m ³)	7850
Viscosity (Pa·s)	0.08
Oil density (kg/m ³)	870
Surface roughness (µm)	0.5

Comprehensive radius, Speed and Load

2.2. Numerical Results

Parameters	Value
Length of roller (mm)	14
Middle length of roller (mm)	12
Inner radius of roller (mm)	16
Outer radius of roller (mm)	25.5
Radius gap (µm)	5
Elasticity modulus (GPa)	2.1
Pressure-viscosity coefficient (Pa ⁻¹)	2.2×10 ⁻⁸
Solid density (kg/m ³)	7850
Viscosity (Pa·s)	0.08
Oil density (kg/m ³)	870
Composite surface roughness (µm)	0.5

For various viscosities

Effect of oil viscosity

The minimum film vs. viscosity in the cam-roller contact zone

 $\theta = 0 \deg$

 $\theta = 100 \deg$

 $\theta = 155 \text{ deg}$

1.4

2.2.2. Startup

Schematic diagram of cam surface velocities in the startup running process

2.2.2. Startup

1.6

2.3. Experimental Device

2.3. Experimental Device

3, Conclusion

- Lubrication analyses of a cam-roller unit (cam-roller pair and roller-pin pair)has been successfully carried out. The lubrication state of two contact pairs in a cycle is obtained.
- □ The skidding is not constant, and the negative slide-roll ratio appears. In general, the skidding is more serious in the base part, and less skidding in other regions.
- Compared with the steady running, the skidding is more serious in the startup process, especially in the beginning of acceleration stage.
- □ The optimized viscosity in the calculation is well correlated to that used in the engines.

The 11th International Conference of ICE Reliability Technology, Jinan, China, 17-19 Feb., 2023

