Alternative dual- and mono-fuel concepts for decarbonization of future commercial engines

Future technologies toward decarbonization of commercial engines R. REZAEI, M. RIESS, T. DELEBINSKI, M. SENS and M. YANG

Motivation and drivers for future technology

Future fuels for <u>on-highway</u> applications

- System development from concept to series
- NOx conformity in real-driving cycles

Decarbonization of off-highway applications

- E-fuels and the development trend
- Examples of Methanol-based and H_2 -dual-fuel engines

Motivation for Alternative Powertrain Structures Commercial Vehicle Applications

 \rightarrow At the moment no CO₂ regulation for off-highway. It can be assumed that off-highway will follow on-highway

Selection of E-fuel

Considering Regulation and OEM Boundary Conditions

Multiple e-fuels under development

- Main motivation is the CO₂ regulation. For which regulation (wellto-wheel, tank to wheel, etc.) which e-fuel strategy is better?
- There are multiple OEMs working on different e-fuel in EU, USA, etc.
- Selection of the most promising efuel depends on multiple factors
- Individual definition of e-fuel required
- → IAV can support on all above points from consulting to system development

Motivation and drivers for future technology

Future fuels for <u>on-highway</u> applications

- System development from concept to series
- NOx conformity in real-driving cycles

Decarbonization of off-highway applications

- E-fuels and the development trend
- Examples of Methanol-based and H_2 -dual-fuel engines

IAV Model-based System Development Methodology From Concept to Series Preparation

→ Long-term experiences with the state-of-the-art technologies for the complete system development

IAV references: H₂ combustion engine development

H₂ engine concept development for On-Highway EURO VII

- Technology evaluation: water injection, pent roof, H₂ PFI & DI
- Single-cylinder testing
- Delivery IAV Hydrogen combustion model
- Concept study from air-path, combustion and design up to EAT

Calibration 13 L HD H_2 engine for Off-Highway

- Turbo-charged 13L Hydrogen Mono-Fuel
- H₂ Port Fuel Injection (PFI)
- Engine calibration
- Emission evaluation on NRTC

H₂ tractor development from concept to demonstration

- Holistic system development
- From concept design to machine demonstration
- Concept design, tank and safety, software, calibration up to demo.

Zero emission vehicle using H₂ ICE propulsion system

Potentials for zero-emission vehicles using H₂ as fuel

- HD vehicles certified as "zero-emission" required to emit less than 1 g CO₂/kWh [Source: EU regulation 2019/1242, link: <u>http://data.eu-ropa.eu/eli/reg/2019/1242/oj</u>]
 - Account for CO₂ from DEF (AdBlue), being carbamid (CH₄N₂O) + water mixture

ightarrow 2.0 g/kWh engine-out NOx

 Holistic development from concept and calibration is required to reach the low engine-out NO_x

• Holistic development and evaluation of engine and after-treatment with optimized calibration required

NO_x conformity of H₂ ICE propulsion system

NO_x conformity for future ultra-low NO_x Hyd. engines

- Significant reduction in NO_x limits for future standards (CARB MY27, EPA planned standard, EURO VII)
- H₂ NO_x conformity demonstrated on CARB Low Load
 Cycle (LLC)
 - Engine-out NO_x emissions < 2.0 g/kWh
 → zero-emission aspect
 - Very low tailpipe NO_x emissions (~ 0.012 g/kWh)
 - SCR-only EAT used (No additional EAT heating required – no EHC)

• The future ultra-low NO_x regulation can be reached with advanced system development

Motivation and drivers for future technology

Future fuels for <u>on-highway</u> applications

- System development from concept to series
- NOx conformity in real-driving cycles

Decarbonization of off-highway applications

- E-fuels and the development trend
- Examples of Methanol-based and H₂-dual-fuel engines

Future Fuels for Off-Highway Applications

IAV reference: GANE Fuel

A Methanol-based fuel for compression ignition engines

• For further results see SAE 2021-01-1198

Key advantages

- ~ 80% NO_x reduction with similar BTE as Diesel
- combustion similar to Diesel, higher BTE possible
- > 80% PM reduction \rightarrow no soot measured, no PM-NO_x-trade-off
- > 99.5% PN red. \rightarrow PN Stage V / Euro VI compliant without DPF
- up to 10% CO₂ reduction in emission cycles achieved

Key challenges

- Fuel flow approx. 2.4x larger \rightarrow Adaptation of tank and supply sys.
- Mechanical wear of the injection system
- No DME approved components currently available
- No ready legislation for mixed fuels and CO₂ reduction
- → Promising e-fuel with Diesel-like combustion system

IAV references: Heavy hauler Diesel-Hydrogen dual-fuel development

- Hydrogen-Diesel dual-fuel combustion system development for a heavy hauler in north America
- Minimum change of engine with maximum substitution rate of Hydrogen
- The whole development of Hydrogen tank and supply system as well as integration of a injection Kit
- Model-based concept development
- 2 L single-cylinder test data for dual fuel operation with Diesel-hydrogen for model validation
- Up to 60% hydrogen substitution rate can be reached at 1600 rpm & 11 bar IMEP (comp. ratio approx. 15)

 \rightarrow Using of the IAV <u>single-cylinder engine</u> to build up the combustion characteristics.

 \rightarrow The 1-D engine simulation is used to build up the full engine behavior.

IAV's Medium and Heavy-duty ICE Cells

- IAV is enhanced engine test benches for hydrogen
- Suitable from LD to HD Commercial Vehicle engines
- Testing from component up to full engine calibration and series preparation

• 20 asynchronous dynos for CV out of 50 in total @ IAV

MD Test Benches	HD Test Benches
B07: 330 kW / 1,400 Nm	B14: 660 kW / 3,500 Nm
B08: 220 kW / 934 Nm	B15: 780 kW / 5,000 Nm
B09: 460 kW / 981 Nm	C02: 650 kW / 3,500 Nm СNG
C01: 330 kW / 700 Nm CNG	G07: 550 kW / 2,500 Nm CNG
G09: 500 kW / 1,000 Nm CNG	G14: 660 kW / 3,500 Nm H2
G10: 235 kW / 1,000 Nm CNG	U01: 660 kW / 3,500 Nm CNG
G15: 550 kW / 1,100 Nm CNG	
G16: 500 kW / 1,000 Nm CNG	Heavy HD Test Bench H2
U02: 330 kW / 1,400 Nm	G13: 1,470 kW / 7,000 Nm
U03: 330 kW / 1,400 Nm	
U04: 330 kW / 1,400 Nm	
J01: 265 kW / 506 Nm (business partner)	Operations: C: Chemnitz, G: Gifhorn, B: Berlin, U: Detroit, J: Tokyo, Br: Sao Paulo
Br03: 330 kW / 1,400 Nm	CNG – Natural Gas capable,

Motivation and drivers for future technology

Future fuels for <u>on-highway</u> applications

- System development from concept to series
- NOx conformity in real-driving cycles

Decarbonization of off-highway applications

- E-fuels and the development trend
- Examples of Methanol-based and H₂-dual-fuel engines

Summary and outlook

Summary and outlook

- 30 % CO₂ reduction cannot be achieved with a "Diesel-only" strategy
- There is a need for zero CO₂ alternative propulsions
- Hydrogen mobility (FC and ICE), e-fuels, electrifications
- HD Hydrogen system development from concept to series
- Large potentials for decarbonization in off-highway sector
- IAV demonstrated a methanol-based HD CI engine
- Retrofit, especially for large-bore engines

 \rightarrow Promising results and continuous development of commercial engines

TAXABLE AVENUE

Contact

Priv.-Doz. Dr.-Ing. habil. Reza REZAEI Manager Advanced Eng. & Model-Based Development HD PWT

IAV GmbH Nordhoffstr. 5, 38518 GIFHORN (GERMANY) Mobile: +49 152 22672127 reza.rezaei@iav.de www.iav.com