Aftertreatment Accelerated Aging Protocol and Applicability for Future Regulatory Compliance

SOUTHWEST RESEARCH INSTITUTE®

Bryan Zavala

POWERTRAIN ENGINEERING

Background

- In 2020, CARB adopted the Heavy-Duty Low NO_X Omnibus Ruling
 - New low load certification cycle
 - Decreased tailpipe NO_X emissions
 - Extended durability and warranty requirements
 - Extended durability tailpipe NO_X emissions
 - New certification procedures requiring OEMS to certify with aftertreatment systems at full useful life
- Similar regulatory updates are expected from EPA and other government agencies, but with potential differences in targets

CARB Low NO_X Omnibus – Standards for 2024 – 2026

	CARB Standards		
	Diesel	Otto	
FUL Mileage	435,000 miles		
NO _X	g/hj	o-hr	
FTP	0.050	0.050	
RMC-SET	0.050		
LLC	0.200		
Idle	10		
PM, g/hp-hr	0.0	05	

- OBD NO_X threshold to stay at 0.40 g/hp-hr
- OBD PM threshold to stay at 0.03 g/hp-hr

CARB Low NO_X Omnibus –Standards for 2027 and Beyond, HHD Diesel Engines

	2027 – 2030		2031 +	
	IUL	FUL	IUL	FUL
Mileage	435,000 miles	600,000 miles	435,000 miles	800,000 miles
NO _x	g/hp-hr			
FTP	0.020	0.035	0.020	0.040
RMC-SET	0.020	0.035	0.020	0.040
LLC	0.050	0.090	0.050	0.100
Idle, g/hr	5	5	5	5
PM, g/hp-hr	0.005			

- OBD NO_X threshold to stay at 0.40 g/hp-hr
- OBD PM threshold to stay at 0.03 g/hp-hr

Potential Pathways to Generate FUL Aftertreatment Systems - Example

- I. Durability experiment HHDD: **9,800 hours** (435,000 miles)
- 2. Durability with accelerated aging HHDD: **5,500 hours** (435,000 miles)
- 3. Accelerated aging only HHDD: **980 hours** (435,000 miles)

	Primary Intended Service Class	Current UL (miles)	DDP Procedures	
	LHDD	110,000	Age EAS on dynamometer to FUL using pathway 1 or 2 cycles (≈ 2,500* hours)	
	MHDD	185,000	Age EAS on dynamometer to FUL using pathway 1 or 2 cycles (≈ 4,200* hours)	
-	HHDD	435,000	 Two possible options: Age EAS on dynamometer for 4,600 hours using pathway 1 or 2 cycles, and then age aftertreatment only using accelerated aging for ½ UL(≈600 hours DAAAC). Age for 300 additional dyno hours (≈ 5,500* hours). This option requires NOx sensor data submittal. Age EAS on dynamometer to FUL using pathway 1 or 2 cycles (≈ 9,800* hours), or 	

Potential Accelerated Aging Times for Future Regulation

POWERTRAIN ENGINEERING

Diesel Aftertreatment Accelerated Aging Cycles (DAAAC)

- DAAAC is a protocol intended to accelerate aftertreatment aging utilizing field representative exhaust conditions
 - 10X acceleration factor: 9800 hours \rightarrow 980 hours
 - Aftertreatment is aged as a completed system
 - DAAAC is <u>NOT</u> a cycle
- Primary deactivation mechanisms considered:
 - Hydrothermal aging
 - High temperature exhaust conditions such as regeneration
 - Lubricant derived poisons
 - Engine oil consumption
 - Sulfur exposure
 - Fuel and engine oil consumption

DAAAC Field Data Requirements

POWERTRAIN ENGINEERING

Accelerated Aging Cycle Generation

- To generate the cycle modes, a data guided process is followed, which considers non-regeneration and regeneration modes
 - Non-regeneration modes are established primarily as the chemical aging modes
 - A regeneration mode is the dominant heat load contributor for catalysts

Catalyst Heat Load Determination

- Arrhenius equation-based algorithms are utilized to ensure accelerated aging cycle will meet the full useful life heat load targets
 - Regulatory agencies are already utilizing this approach for existing compliance requirements
- Robust activation energy determination experiments have been developed to ensure catalyst aging characteristics are captured

Arrhenius Equation

$$k=Ae^{rac{-E_a}{RT}}$$

- k = rate constant
- A = pre-exponential factor
- $E_a = {{
 m activation energy} ({
 m in the same units as} \ {
 m R*T})}$
- R_{\parallel} = universal gas constant
- T = absolute temperature (in Kelvin)

Chemical Aging Exposure

- Chemical aging exposure primarily occurs in the non-regeneration modes
- Oil consumption
 - Available field data is used to quantify expected oil consumption over engine lifetime
 - DAAAC considers in-cylinder oil consumption as the primary consumption pathway
 - Lubricant derived poison exposure should reflect this pathway
- Sulfur exposure
 - Fuel consumption and oil consumption measurements are considered
 - High sulfur fuel or SO_2 gas can be utilized to accelerated sulfur exposure

Accelerated Aging Platform Requirements

- To operate an accelerated aging cycle, the aging platform should be equipped or modified to allow for the following:
 - Exhaust flow rate control
 - Exhaust temperature control
 - Oil consumption metering
 - Elevated sulfur exposure
 - Complete control of regeneration events
- Known accelerated aging platforms include:
 - DAAAC modified engine
 - Burner based technology
- Both aging platforms are being considered as part of an accelerated aging cycle validation experiment supported by EPA

DAAAC-Modified Engine Setup

©SOUTHWEST RESEARCH INSTITUTE

Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) Reactor

- ECTO-Lab is a computer controlled multifueled burner-based reactor system used to replicate stoichiometric and lean exhaust conditions
- The system utilizes a modular design, which can be configured to conduct regulatory and specialized testing for aftertreatment emissions components

H₂O

POWERTRAIN ENGINEERING

SO₂

Lubricant

Derived Poisons

Summary

- DAAAC is a protocol utilized to establish accelerated aging cycle conditions
 - Field data is analyzed to generate representative modes and targets for the accelerated aging cycle
 - The following deterioration mechanisms are considered:
 - Hydrothermal aging
 - Lubricant derived poisons
 - Sulfur exposure
 - The protocol can accelerate aging by as much as 10 times compared to conventional service accumulation methods
 - Helps OEMs significantly reduce the aging burden required by the future regulations
 - DAAAC is being validated for future regulatory use by EPA utilizing engine and burner-based platforms

Thank You!

- Bryan Zavala
 - Senior Research Engineer
 - Southwest Research Institute
 - Powertrain Engineering Division
 - Diesel Engine and Emissions Research Department
 - +I 2I0-522-3840
 - bryan.zavala@swri.org

