

缸盖蠕铁高温服役性能与损伤机制评价表征

Service properties and damage mechanisms of compacted graphite iron for cylinder head at high temperature

<u> 庞建超</u>

邱 宇 邹成路 朱 刚 张孟枭 李守新 张哲峰 **下下 中國科学院全属研究所**

2020年11月1日

jcpang@imr.ac.cn 15940017108(微信同号)

一、缸盖研究背景与主要工程问题

Research background and main engineering question

1. cylinder head for diesel engine

Application of diesel engine

Service condition of cylinder head

Silva, F. S., Eng. Fail. Anal. 2006;13:480. Information of Magna Powertrain.

2. Service component and material requirement

Zhang Q, et al. Eng. Fail. Anal.. 2013;34: 51. Guo B, et al. Adv. Mech. Eng. 2014;6: 862.

3. Material and microstructure

4. Failure mode at service conditions

Jing GX, Zhang MX, Qu S, Pang JC* et al, Eng. Fail. Aanal. 2018; 90: 36.

4. Failure mode at service conditions

5. Question of service property prediction

Pang JC et al, Mater. Sci. Eng. A, 2013; 564: 331; Fatigue Fract. Eng. Mater. Struct., 2014; 37: 958.

5. Question of service property prediction

Coffin LF, et al. Proc. Inst. Mech. Eng. 1974;188:109. Neu RW, Sehitoglu H, Metall. Mater. Trans. A, 1998;20: 1755. Miller MP, D.L. et al. J. Eng. Mater. Technog, 1992;114: 2346.

6. Simplified and quantified service properties at HTs

Experimental methods

Ten./ LCF ratio : 10 ⁻² /s\ 10 ⁻⁴ /s	TMF Tem.: 25~400, 25~500 °C			
FS: Staircase 5 Pairs 1×10 ⁷	HCF/LCF Tem.: 25, 400, 500 °C			

F:10%~60% P:15%~80% G:~10% VG:60%~90%

Recognition of traditional materials: composite

二、拉伸损伤机制与性能定量表征 Tensile damage mechanism and property characterization

1. Tensile properties of CGI

Qiu Y, Pang JC*, et al. Mater. Sci. Eng. A 2016; 667: 290.

2. Tensile mechanism of CGI

In situ ferrite evolution

(a) 25°C; (b) 200°C; (c) 400°C; (d) 600°C

Carbon diffusion Carbide formation

2. Tensile mechanism of CGI

In situ pearlite evolution

(a) 25°C; (b) 200°C; (c) 400°C; (d) 600°C

Carbon diffusion Carbide formation

In situ analysis at RT

Graphite crack Slipping in ferrite

2. Tensile mechanism of CGI

In situ analysis at 450 °C

Inner slipping GB sliding

2. Tensile mechanism of CGI

In situ analysis at 600 °C

GB sliding in ferrite

Ferrite analysis after fracture

Sliding

(a) 25°C; (b) and (c) 450°C; (d) 550°C

2. Tensile mechanism of CGI

Pearlite analysis after fracture

(a) 25°C; (b) and (c) 450°C; (d) 550°C

3. Tensile quantitative relation

Takeo Yokobori (T< 450°C) Dislocation pinning-unpinning

$$\frac{\sigma_{\rm ms}}{\sigma_{\rm ms}^0} = \left(\frac{\dot{\varepsilon}E\omega_0}{mkT\sigma_{\rm ms}^0}\right)^{mkT}$$

Strength and temperature:

 $\sigma_{\rm b} = \sigma_0 \exp(-BT) \cdot \exp(AT \ln T)$

Vacancy diffusion (GB) (T>450°C)

$$\tau_{\rm c} = \tau_0 \exp(\frac{Q}{RT}) \ \ \sigma_{\rm b} = \frac{\tau_{\rm c}}{\cos(\overline{\theta})\sin(\overline{\theta})} (1 - \frac{\Delta l_0}{l_0})$$

Strength and temperature:

$$\sigma_{\rm b} = \sigma_0 \exp(\frac{Q}{RT})$$

25

4. Brief summary

Tensile strength (a) and mechanism (b) evolutions of CGI with temperature

三、高温疲劳损伤机制与强度预测 Fatigue damage mechanism and strength prediction

28

1. Mechanism analysis of CGI

500°C

25°C S. I : (a) N=0; (b) N=156; (c) N=506 and (d) N=120009

1. Mechanism analysis of CGI

25°C S. I

Typical profile morphology : $\sigma_a = 160 \text{MPa}, N_f = 489151$

500°C S. I

Typical profile morphology : $\sigma_a = 170$ MPa, $N_f = 163812$

1. Mechanism analysis of CGI

S.III: (a) 400 °C; (b) 500 °C

Fatigue crack initiation and propagation

2. Quantitative relation of CGI

Kitagawa H, et al. ASM, Metals Park, Ohio. 1976.El-Haddad MH, et al. Eng. Fract. Mech. 1979 11: 573.Tanaka K, et al. Int. J. Fracture. 1981 17: 519.

Graphite

Ferrite

 $\sqrt{Area_{g}} + Area_{f} - \sqrt{Area_{g}}$

 $\sqrt{Area_g}$

Fatigue strength of CGI

$$\sigma_{\rm w} = \sigma_{\rm w}^{\rm f} \sqrt{1 - \frac{1}{\sqrt{1 + Area_{\rm f}}/Area_{\rm g}}}$$

$$\sigma_{\rm w} = \sigma_{\rm w}^{\rm f} \sqrt{1 - \frac{1}{\sqrt{1 + w_{\rm f}/w_{\rm g}}}}$$

2. Quantitative relation of CGI

Ratio of interphase corrosion depth to critical crack length

3. Brief summary

(a) S-N; (b) Basquin relation; (c) fatigue strength; (d) relation between tensile and fatigue strengths

四、疲劳寿命预测模型与损伤机制 Fatigue life prediction model and damage mechanism

38

Non-monotonic change of fatigue life with temperature

Qiu Y, Pang JC*, et al. Int. J. Fatigue 2018; 117: 450.

1. LCF properties and mechanism at HTs

Crack propagation

Damage mechanism

Qiu Y, Pang JC*, et al. Int. J. Fatigue 2018; 117: 450.

2. TMF properties and mechanism

Hysteresis loop and cyclic behavior curves

2. TMF properties and mechanism

Behavior&mechanism: LCF at HTs ≈ TMF No creep & oxidation

Zhang MX, Pang JC*, et al. Mater. Sci. Eng. A. 2017; 698: 63.

3. Simply quantitative relation: Hysteresis energy

reflected by hysteresis energy

Prediction model at RT : Hysteresis energy reflect damage

Energy model can obtain life prediction and optimization at RT

Liu R et al. Acta Mater., 2015; 83: 341; Shao CW, et al. Acta Mater., 2016: 103: 781.

3. Simply quantitative relation: Hysteresis energy

Introduce the temperature parameter, obtain LCF model at HTs

3. Simply quantitative relation: Hysteresis energy for TMF

Application: replace TMF by LCF at constant temperature

4. Simply quantitative relation: Hysteresis energy for Al-Si

Strain ratio r: Introduction of r can reflect coupling damage mechanism of creep and fatigue

4. Simply quantitative relation: Hysteresis energy for Al-Si

New model predict well, optimize property

5.Brief summary

$$N_f = (W_0 / W_s)^{1/\beta}$$

$$W_{a,TMF} = A + K\varepsilon_{mech} + W_{a,LCF}$$

$$W_s^{TMF} = W_0 \begin{pmatrix} v_{LCF} \\ v_{TMF} \end{pmatrix}^{-\beta(1-k)} \cdot N_f^{-\frac{1}{\beta}}$$

Prediction model at HTs + suitable correction = TMF life prediction

五、主要结论 Main conclusion

 $\sigma_{\rm b} = \sigma_0 \exp(-BT) \cdot \exp(AT \ln T), T \le 450^{\circ} \text{C}$ $\sigma_{\rm b} = \sigma_0 \exp(Q/RT), T > 450^{\circ} \text{C}$

$$\sigma_{\rm w} = \sigma_{\rm w}^{\rm f} \sqrt{1 - \frac{1}{\sqrt{1 + w_{\rm f}}/w_{\rm g}}}$$

Based microscopic mechanism

Challenge & Prospect

关键共性问题理性简便解决方案

Tensile, fatigue properties, damage mechanism, temperature

- 1. Qiu Y, Pang JC*, et al , Mater. Sci. Eng. A 2016; 664: 75.
- 2. Qiu Y, Pang JC*, et al , Mater. Sci. Eng. A 2016; 667: 290.
- 3. Zhang MX, Pang JC*, et al , Mater. Sci. Eng. A 2017; 698: 63.
- 4. Zhang YY, Pang JC*, et al, Mater. Sci. Eng. A 2018;713:260.
- 5. Qiu Y, Pang JC*, et al , Int. J. Fatigue 2018; 112: 84.
- 6. Jing GX, Pang JC*, et al, Eng. Fail. Anal. 2018; 90: 36.
- 7. Qiu Y, Pang JC*, et al , Mater. Sci. Eng. A 2018; 724: 324.
- 8. Zou CL, Pang JC*, et al, Mater. Sci. Eng. A 2018; 724: 606.
- 9. Qiu Y, Pang JC*, et al , Int. J. Fatigue 2018; 117:450.
- 10. Zou CL, Pang JC*, et al, Mater. Sci. Eng. A 2019; 763: 138101.
- 11. Liu QY,Pang JC*, et al, Mater. Sci. Eng. A 2019; 764: 138248.
- 12. Zhang MX, Pang JC*, et al, Mater. Sci. Eng. A 2020;771:138671.
- 13. Zou CL, Pang JC*, et al, Int. J. Fatigue 2020; 135: 105576.
- 14. Zhang YY, Pang JC*, et al , J. Mater. Res. Technol. 2020; 9: 7002.

Tensile, fatigue properties, damage mechanism, temperature

- 1. Wang M, Pang JC*, et al, Mater. Sci. Eng. A 2017; 704:480.
- 2. Wang M, Pang JC*, et al, Mater. Sci. Eng. A 2018; 715:62.
- 3. Wang M, Pang JC*, et al, Adv. Eng. Mater. 2018;20:201700610.
- 4. Liu HQ, Pang JC*, et al, Adv. Eng. Mater. 2018;20: 201700972.
- 5. Wang M, Pang JC*, et al, Mater. Sci. Eng. A 2019; 759:797.
- 6. Wang M, Pang JC*, et al, Int. J. Fatigue 2019; 127:268.
- 7. Liu HQ, Pang JC*, et al, Fatigue Fract. Eng. Mater. Struct., 2019; 42:2372.
- 8. Wang M, Pang JC*, et al, J. Mater. Res. Technol. 2019; 8:4556.
- 9. Liu HQ, Pang JC*, et al, Mater. Charact. 2020; 159:110032.
- 10. Wang M, Pang JC*, et al, J. Mater. Res. Technol. 2019; 8:4556.
- 11. Wang M, Pang JC*, et al, Mater. Sci. Eng. A. 2020; 783: 139279.

Representative achievement

Cast iron(CGI\SGI\FGI) cast Al(Hypoeutectic/Eutectic) Steel Cu alloy

Testing & Devolvement & Research

特色测试

力学测试平台: 40余台疲劳机

定制测试

58

Basquin, 1910	Sehitoglu, 1989
$\sigma_a = \sigma_f (2N_f)^b$	$\frac{1}{N} = \frac{1}{N^{\text{fat}}} + \frac{1}{N^{\text{ox}}} + \frac{1}{N^{\text{creep}}}$
$D_i = \frac{1}{N_f} = 2 \cdot \left(\frac{\sigma_a}{\sigma_f}\right)^{-1/b}$	$\frac{\Delta \varepsilon_{\text{mech}}}{2} = \frac{\sigma'_f}{E} \left(2N_f^{\text{fat}}\right)^b + \varepsilon'_f \left(2N_f^{\text{fat}}\right)^c$
Osttergren	$\frac{1}{1} = \left[\frac{h_{cr}\delta_0}{1}\right]^{-\frac{1}{\beta}} \frac{2(\Delta \varepsilon_{mech})^{(2/\beta+1)}}{1}$
$\Delta W_{_T} = \sigma_{_{ m max}} . \Delta \varepsilon_{_p}$	$ N_{\rm f}^{ox} B \Phi^{ox} K_p^{eff} \dot{\varepsilon}^{1-(\alpha-\beta)} $
$N_f^{\ \beta} \left(\Delta W - \Delta W_0 \right)^m = C$	$\begin{vmatrix} \frac{1}{N_f^{creep}} = \Phi^{creep} \int_0^{t_c} A \exp\left(-\frac{\Delta H}{RT(t)}\right) \cdot \left(\frac{\alpha_1 \overline{\sigma} + \alpha_2 \sigma_H}{K(T)}\right)^m dt \end{vmatrix}$
$\sigma_{\max} \Delta \varepsilon_p N_f^{\beta} \nu^{\beta(k-1)} = C$	$\Phi^{creep} = \frac{1}{t_c} \int_0^{t_c} \exp\left[\frac{1}{2} \cdot \left(\frac{\left(\dot{\varepsilon}_{th}/\dot{\varepsilon}_{mech}\right) - 1}{\zeta^{creep}}\right)^2\right] dt$

Msc.fatigue FEMFAT MSYS[®] ABAQUS 国际国家标准FKM IIW ASME NASA GB DIN BS EN

计算模拟

主要研究能力

主要研究能力

61

转子构	勾件疲劳寿命预测	ļ				金属材料疲劳强度分析			
	<u>-</u>)	预测	寿命:3	8.5 有效区域(均相选择)	5	· · · · · · · · · · · · · · · · · · ·) W = 2007
项目	状态	I	况条件 疲劳性能	拉伸性能 拟合方式	修正系数平均		a tan and a c	3	145 17.20
工况条件	已输入					X: 0 - 537 -	HANNING BE	and the state	i star
疲劳性能	已输入		袻 泇樟刑		Miner	Y: 0 🛖 - 494 🛖	and the thing	いい、感じたい	1. 1. 5 4
拉伸性能	700 MPa		贝尔尔美里	•	winci	比例尺(拉线进场)	N-GRA Alling	STA STE	8
払合万式 換工系数	Basquin		平均应力修正: Goo				The states a		ini on "
<u>下下</u> 平均应力	Goodman		비스눛칼, Bas		Basquin		Stand .		S. S. S. S.
预测模型	Miner				Dasquin	基于基体组织 基于夹杂物尺寸	to a set and	142612 2013	2.5
			修正系数	:	$C_{S} = 0.6$	基于珠光体区裂纹长度		The second second	LET RUNER
	山国南方由	33			$C_{\rm p} = 0.9$		and april 1		CAR LOGIL
	HINA SOUTHERN POWER	GRID			0.5		近天风风飞起车。	a series and the series of the	STE TA
						铁素体百分比: 42 +	「「日本の」	and the second	
	$\square \square $				珠光体百分比: 38 + 25	-11 - TP. 163	Sale Sult	AN S. H	
						帮助	and the state	. Calor	char is
哈电隼	同 东方电	气					Fri File	The the the	The sector
Harbin Power Plant Equipme	ant Corporation	TRIC		输出为EXCI	EL 保存	援出 疲劳强度: 134.119643 (MPa)		Cinera and and	
				-			mark a liter	a train the the	1
材料力学	学性能数据管理	1	材料浏	览 🗧	利及标准	浏览 个人中心 用户管理	专利及标准管理	您好,	管理员 退出
快速浏览	高级检索	材料	科列表					检索	
华大口期			材料 🔺	牌号◆	工艺≑	成分	类型 ≑	发布日期 🗢	
及仰口翔		154	钼及铝合金	A356-T6	铸造	Si:6.66;Mg:0.38;Fe:0.15;Ni:0.01;Cr:0.00;Sn:0.00	高周疲劳,拉伸	2019-03-11	▲
牌号	牌号		钼及钼合金	7055	锻造-冷轧		拉伸,高周疲劳	2019-03-14	查看
材料		156	钼及铝合金	Al 4xxx	铸造	Si:12.66;Mn:0.94;Fe:0.65;Mg:0.61	高周疲劳	2019-03-14	查看
工艺		157	钼及铝合金	7075-T6	其它	Zn:5.67;Si:0.13;Fe:0.25;Cu:1.56;Mn:0.01;Cr:0.19;Ti:0.03;V:0.01	拉伸,高周疲劳	2019-03-12	查查
米刑	高周症芸	158	钼及铝合金	6061-T6	其它	Si:0.52;Fe:0.2;Cu:0.2;Mn:0.09;Mg:0.95;Cr:0.23;Ti:0.02;Zr:0	拉伸,高周疲劳,冲击	2019-03-11	査査
7.±	10/10/25	159	钼及铝合金	AS7G06-T6	铸造	Si:7.00;Mg:0.56;Fe:0.10;Cu:0.01;Mn:0.03;Ni:0.01;Zn:0.01;Pb:0	高周疲劳,拉伸	2019-03-12	查看
成分	> %	160	铝及铝合金	2124T851	其它	Cu:3.80:Ma:1.20:Mn:0.40:Fe:0.30:Si:0.20:Cr:0.10:Ti:0.15:Zn:0.	高周疲劳	2019-03-13	吉吾
	> %	161	相及铝合金	A357	铸造	Si;7,10:Fe:0.06:Cu:0.01:Mn:0.01:Ma:0.60:Zn:0.01:Ti:0.13:Sr:0.0	高周疲劳.拉伸,冲击	2019-03-11	
									査吾
	> %	162	铝及铝合金	6061	铸造	Mg:1.05;Si:0.65;Fe:0.34;Cu:0.26;Zn:0.13;Ti:0.12	拉伸,高周疲劳	2019-03-14	<u>直看</u> 查看

根据构件服役情况定制软件(插件)

Thank for your attention

感谢关注! 敬请提问! 欢迎莅临沈阳指导!

疲劳分会公众号 历

庞建超个人微信

疲劳断裂学术交流V群即将建立!!!