From Germany to China:

A successful partnership always starts locally

MBD: Coordination Engine+ EAT for Emission Reliability prediction 基于模型的开发:前后端协作下的排放可靠性预测

TAT

The 9th International Conference of ICE Reliability Technology Oct. 31-Nov.01.2020 第九届内燃机可靠性技术国际研讨会 Qing Li, et al. IAV Berlin 李青,德国IAV,柏林

automotive engineering iii Greeting Speech from Berlin 徳国IAV董事长致辞祝贺大会圆满召开

Together with modern technology for a cleaner future 科技为先,拥抱蓝天

Dr. Ulrich Eichhorn IAV Germany, Chairman of the Board 德国IAV董事长

整车开发

IAV, Your Strong Engineering Partner What we develop moves you 作为全球领先的工程合作伙伴, 德国IAV致力于机动性能的未来发展。

燃料电池

>10亿欧元年营业额 营业额常年保持汽车工程服务公司前3,源于客户深度信任

>35年行业经验积累 星火源于柏林工业大学专家创业,今已稳健成长为全球最大的工程公司之一

>8200名全球员工 25家全球分部 含北京/上海

研发工程师和科学家超过65%, 经验创新高度集成, 是我们成功的基石

李青 Qing Li 报告主讲 IAV德国总部预研主管工程师/中国区项目负责人

qing.li@iav.de 同济大学本科,柏林工业大学硕士 留德12年业内经验8年 常年与欧洲日本知名车企共同开展预研发,配合系统布置量产落地 项目经历:发动机标定,台架测试,汽/柴油/燃气甲醇/等减排方案布 置,催化化学&电化学能量仿真模拟等

Jochen Schäffner 约翰·舍夫勒

IAV德国总部预研仿真测试部部长

jochen.schaeffner@iav.de 德国工程硕士/MBA 业内经验近20年 建立并发展IAV高精尖物理化学实验室 和仿真团队,联合并组织相关部门实现 全局方案落地

杨明明 Mingming Yang

IAV中国商用车市场负责人

mingming.yang@iav.de 清华大学本科 斯图加特大学硕士 拥有多年在乘用车及商用车领域研发, 生产与验证,质量控制经验,并负责技 术推广和与德国团队对接。 项目经历:动力系统先进技术预研发, 发动机及整车标定,台架测试,整车验 证,质量管理等

- Greeting speech from Chairman of the IAV Board
 德国IAV董事长致辞祝贺大会召开
- Introduction
 德国IAV&报告人简介
- Motivation of the coordination Engine + EAT 前后端协作动机
- Key components and IAV technical application
 相关前后端关键元件和IAV独家技术介绍
- Future Diesel powertrain concepts for Engine + EAT
 未来柴油机传动尾排总布置示例
- MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台
- High accurate EAT component and Sensor modelling
 高精度EAT元件仿真建模介绍
- Ultra fast Al/Machine Learning EAT + Sensor model
 超高速Al机器学习模型 EAT +Sensor
- ・ Summary/Outlook 总结与展望

Motivation of the coordination Engine + EAT 前后端协作动机

- → 国六新规加入了排放质保,测试流程升级,新增监测PN数据, RDE PEMS 涵盖更全面,苛刻的动态工况
- → 后处理元件也属于主机厂家需要负责质保的可靠性关键零部件
- → 排放可靠性和前后端紧密相关,前后端协调更能发挥两端潜力,为发动机减负,进一步确保可靠性
- → IAV 后处理和系统布置预研发团队陪伴了当时欧洲车企切换准备过程,12年积累之经验可有效辅助国内客户布局规划

Key components and IAV technical application 相关前后端关键元件和IAV独家技术介绍

→ 先进的减排手段多管齐下:借助电气化手段从发动机端降低原排控制CO2;后端选用可靠后处理元件不同组合进一步提高转化率

MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台

愈发复杂方案组合需要虚拟平台的支持:可靠性预测 → 虚拟样机 → 关键元件建模

Real Virtual ECU Engine Catalysts + Sensors he Path to CO2-neutral subsystem Mobility in 2050 (software) (after treatment) GT Gamma Technologies axisuite Exothermia modeling efficiency E-Emissions-Driving Simulator **VCS** Interface Ultra low-NOx diesel hybrid VCD with INCA total system 10101010 10101010101010101110 30mg/mile nne virtual twin monomore

11011

0101101011010101111111010

011111

RDE Simulator

- 虚拟样机是由基于数据集成的各部件模型,通过数学运算组装而成
- 在匹配的环境模型下可以作为虚拟双胞胎使用,输入交通信息后甚至可以进行复杂线下测试
- 最终实现借由虚拟标定桌面和标定模拟器,预测RDE油耗和排放可靠性

Source: IA\

MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台

→ 全面的排放可靠性标定需要匹配的虚拟测试环境: 子模型建立 - 模块集成 - CAE预标定 - 连接标定工具 - 虚拟标定桌面完成
→ 前瞻性减排开发和落地经验和完整的虚拟前后端开发工具链Velodyn+axisuite, 因其高兼容性也可分块使用或与其他软件对接

Future Diesel powertrain concepts for Engine + EAT 12V or 48V concepts未来柴油机传动尾排总布置示例

				*: only as pre	diction of China 7 HP-EG	R Wixer 1	LP-EGR	2
LD Application	Concept	EAT – cc	EAT – mid	EAT – uf	AdBlue dosing	EGR	Alternative	CO ₂ Potential
Basis China 6b		DOC	SDPF	SCR	TwinDosing	HP / LP-EGR		
China 7* Approach a/b	12V	LNT or λ=1 "TWC"	SCR / SDPF	SCR	TwinDosing	iEGR / HP / LP-EGR	48V or iEGR	
China 7 Approach	48V Mild Hybrid	PNA+EHC	SCR / SDPF	SCR	TwinDosing	HP / LP-EGR	-	
China 7 Approach	Dedicated Hybrid	eDOC	SCR / SDPF	SCR	TwinDosing	LP-EGR	-	

→ 12V系统需要在缸内燃烧效 率上继续攻坚 (喷射压力, 可变气门调节气体浓度)

engineering

mid AdBlue 2

(12v)

Filter

(48V) CC AdBlue 1

- 48V系统可承载高效热管 \rightarrow 理,有效改善冷启动排放
- 48双电机混联混动方案拥有 \rightarrow (串联/并联/增程 更高目由度 /驱动时充电等) 对电驱动, 变速器等配合要求也更高

考虑到CO₂NO_x,最受欢迎 \rightarrow 的方案是专用混动+柴油

MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台: P1+P4 专用混动"RDE 3 km"示例

ASC

MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台: P1+P4 专用混动"RDE 3 km"示例

Combined MHEV P1 + P4 Parallel EM Operation

Combined MHEV P1 + P4 <u>Serial/Parallel</u> EM Operation

MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台: 重柴道路应用排放硬件上限分析

automotive engineering

MBD virtual Platform for Emission Reliability prediction 排放可靠性预测, MBD在环仿真平台: 子模型类别选择

automotive engineering

- → 除基于特性曲线图的模型外,IAV共划分了4类复现发动机原排的建模方式,分级将气路,排放核心,液态循环纳入模型
- → 后处理建模则分为generic基本功能性表征模型, accurate高精度物理化学模型, 和超高速AI&ML机器学习模型

automotive engineering

IAV Soot trolley

Fuel cell sim

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模: 高精度模型基石 - IAV顶级物理化学工程实验室PCL

IAV Highly modern Physical Chemical Laboratory (PCL) :

- 4 fully automated test benches, 5 w/ manual intervention, ISO certified
- Gas analytics: 5xFTIR, 5xFID, 3xNDIR, 1xPMA
 CI-MS / CI/EI-MS for each test line, infrared heating oven: 8 s to 650°C
- · Soot trolley: loading real soot from engine gas of filter
- Highly automatic: Close-loop online control (T°C, time, eff.%, Storage)

High precise Testing:

- EAT function benchmarking tests (catalyst & Filters)
- Stationary and transient measurements and driving cycles
- Back pressure, Sensor measurements
- Aging and poisoning investigations, Chemical Analysis

高精度的模型离不开高精度的测试数据. IAV 物理化学实验室不仅提 供实验数据输入给汽/柴油/燃气/甲醇发动机后处理测试和仿真,同 时也为电池/燃料电池的开发提供电化学老化毒化测试和仿真 IAV PCL: Testing + Modelling

 NO_x / wide band / NH_3 / switch type sensors

HD EAT Aging (max. 1100°C)

Analyse

O₂ fraction cathode

Light Microscopy

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例: IAV与BMW共同开发的SCR量产应用控制

automotive engineerina

16 IAV 10/2020 TS-I7 L1Q Status: CONFIDENTIAL - NO PASSING ON TO THIRD PARTIES

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例: 滤清器背压仿真 Back pressure modelling

automotive engineering

→ 建模软件自带完成模型构架,全面考量载体物理特性,通道内摩擦,瞬时压降等,可按需调用内嵌默认模型或自定义参数 → 背压建模的过程:无涂层附着的滤清器-流速考量-温度考量-涂层考量-碳烟灰分考量,模拟效果可与高压气体台架测试验证

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例:积碳过程与再生状态

 \rightarrow Simulation of soot loading, back pressure, filtration, soot regeneration under various conditions

→ IAV high accurate filter model shows great agreement with experiment results 过滤,积碳和再生过程可精准仿真再现

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例:积灰模型 Ash modell

→ 通过对积灰件的光学显影和CT扫描可获取灰分轴向和壁内分布,积灰件可通过真实耐久件或者直接燃烧机油快速积灰获得
 → 积灰建模精度,可通过对比较满灰分时仿真背压,Plug ash长度与真实耐久件来验证

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例: 3D可视化积碳积灰建模 3D soot simulation

→ axisuite的3D仿真: 颗粒滤清器在DTL时内部积碳量变化; 高可视化利于再生温控/时长等参数对再生效果影响的校验和理解

automotive engineering

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例: Lean NOx Trap (LNT) 建模

高精度LNT模型与实际WLTC循环校验

模型结果 (1D 物理化学模型)

高精度模型建模过程:

- 基于核心尺寸实验室,模拟稳态和瞬态条件,包括OSC,NSC,结合温度标定,包含针对涂层储NOx以及CO&THC转化能力,
- 整合硫中毒反应, 脱硫工况等的独立功能检验
- 针对次级排放的高精度模拟 (例如N₂O和NH₃)

· 结合元件热力学特性,小样模型放大至台架或整 车商的全尺寸模型

• 与WLTC测试结果校验

→ 模型复杂程度取决于项目目标

without sulphur

with 2a/L sulphur

NO_x release

NO Exp

NO₂ Exp

-NO, Exp

NO Sim

■ NO₂ Sim
■ NO₂ Sim

Time [s]

- > 模型精度取决于实验数据的质量,尤其是在rich工况下
- > 建模精度在很大程度上取决于再生阶段的模拟,还取决于催化剂的工况历 史,如预处理等
- → LNT的涂层特性转化为化学模型后较为复杂,精准模型包含化学反应式高达40余个,还有大量表征组分间的互相抑制作用的参数
- → 如何将功能表征单独用测试分离并定量分析,是Know how的深层积累

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例: 贵金属老化预测建模 PGM, Aging prediction

osc

→ TWC三元催化器不仅用于汽油机,同时也是天然气卡车重要的后处理元件,此处针对TWC氧化能力OSC的老化预测建模

- 贵金属含量不仅意味着元件成本,其含量表征(有效活性含量)也象征着EAT不同老化阶段
- 即使在高转化率要求下,贵金属也并不是越多越好,放热过多反而加速老化,可选择分区涂覆或与载体多孔性优化相结合

High accurate EAT component and Sensor modelling 高精度EAT元件仿真建模示例:氧传感器和NO_x传感器模型

- → 宽频氧传感器λ wideband sensor 模型是基于窄频氧传感器λ switch type sensor model 的拓展
- \rightarrow 宽频氧传感器 λ wideband sensor 可以很好的复现真实 IP 电量从而对上下游 λ 值进行精度仿真
- → 基于宽频氧传感器拓展而成的NO_x传感器也具有较高仿真精度,在含有NO₂NH₃的环境中仍旧可以给出良好的NO_x仿真信号

Ultra fast Al/Machine Learning EAT + Sensor model 超高速AI机器学习模型: 氧传感器模型RDE示例

Exemplarily results for a RDE cycle (Wideband and switch sensor)

→ 两种超高速AI/ML传感器模型都具有和参考模型象媲美的模型精度, 仿真速度比realtime实时模型快16000-21000倍!

- → 超高速模型需要尽可能多有关于其应用场景的信息输入,如气体浓度上下限,标定控制策略等,以确保其实用性和可靠性
- → 超高速模型需要高精度物理化学模型作为基准,属于开发策略上的拓展优化环节

Ultra fast AI/Machine Learning EAT + Sensor model 超高速AI机器学习模型EAT + Sensor: RDE动态循环模拟

Example SCR + Sensor:

Madal	Accuracy %				
woder	Worst	Average	Best		
ixisuite®	Reference				
Cantera	69	90	99		
Esemble	85	93	98		
leural Network	94	98	99		
	Times				
Medal		Times			
Model	Trainin	Times g Sim	ulation		
Model xisuite®	Trainin	Times g Sim 4	ulation 0.5 s		
Model axisuite® Cantera	Trainin	Times Ig Sim 4 8	ulation 0.5 s 3.2 s		
Model exisuite® Cantera Ensemble	Trainin 14 mir	Times g Sim 4 2 1 3	ulation 0.5 s 3.2 s 3.5 s		

IAV publicationSAE Paper 2020-01-2178

Kühne, J., März, C., Werfel, J., Gelbert, G. et al., "Hybrid Modeling of a Cataly st with Autoencoder Based Selection Strategy"

· 超高速模型万倍以上快于实时 模型并保持高精度

- 可用于快速筛选最优参数组
 合,如几何尺寸改变,涂层分
 区,重复循环复现老化效果对
 转化效率,OBD等的影响
- · 海量模拟结果数据库可辅助未 来后处理系统的OTA化,在使 用年限中尽可能保持最优转化 效率

25 IAV 10/2020 TS-17 L1Q Status: CONFIDENTIAL - NO PASSING ON TO THIRD PARTIES

Summary and Outlook 综述与展望

<u>لم</u>ا

4

明确供应商产品应满足的条件,缩短沟通时间,更

這有联动效果。因此不应局限于供应商解决范畴,

- IAV独家Emission controller控制算法可集成于客户 ECU内。在实际道路行驶时通过监控尾排NOx与过 '往预期转化率的差异, 自动调节优化发动机工况, 以确保尾排达标。 项目经验+日本电装Denso
- 在不超于硬件能力范围内, PEMS测试额外NOx减 排可达32%

IAV具有丰富前瞻性减排开发和落地经验,期待与您一起以先进技术为导向,伴随清洁内燃机,重新拥抱蓝天

评估和建议

有针对性

拓展自主知识体系的帮手。

主机厂可以更早的介入布局

避免极限工况,延长后处理寿命

感谢您对因的笑泪

à

A

automotive engineering

 \odot

 \searrow

Qing Li 李青 IAV GmbH

Carnotstraße 1, 10587 Berlin Telefon + 49 303997-89039 qing.li@iav.de

www.iav.com