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Definitions

* Durability and Robustness are not the same thing

— Proper system design can improve both

* Durability describes the resistance of a system to “normal” modes of degradation

— A system can degrade and still be within normal operating limits
— Normal degradation is expected — we can design for this
— Proper design for good durability means understanding field operations and conditions

— Durability can be helped by feedback controls and long-term trim functions

* Robustness describes the resistance of a system to “abnormal” modes of degradation

— Generally associated with a system failure
— Abnormal degradation is not expected — we cannot easily predict failures
— Proper design for robustness means understanding potential system failure modes (FMEA)

— Diagnostics are the primary defense against failure in use — spot failures and limit the damage
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Requirements - Simultaneous NO,  and CO, Reduction
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Requirements - Increased Full Useful Life Periods

CARB Increased FUL Requirements from Low NO, Rule

Useful Life
2027

HHD Diesel 600,000 mi 800,000 mi 350,000 mi 450,000 mi

> 33,000 lbs 11 years, 30,000 hrs 12 years, 40,000 hrs 5 years 7 years, 22,000 hrs
MHD Diesel 370,000 mi  350,000mi  150,000mi 220,000 mi
f B
<= 33,000 Ibs 12 years 15 years 5 years 7 years, 11,000 hrs

LHD Diesel 190000 mi ~ 270,000mi 110,000 mi 150,000 mi

— 19.500"]:[;:% 12 years 15 years 5 years 7 years, 7,000 hrs
HD Otto 155,000 mi 200,000 mi n/al 110,000 mi
= 14,000 |bs 12 years 15 years 7 years, 6,000 hrs

1 No Step 1 change, current HDOE warranty is 50,000 miles, 5 years

Step 3
2031

600,000 mi
10 years, 30,000 hrs

280,000 mi
10 years, 14,000 hrs

210,000 mi

10 years, 10,000 hrs

160,000 mi

10 years, 8,000 hrs

» Current Diesel FUL: HHD = 435,000 MHD = 185,000 LHD = 110,000

= Current Otto FUL = 110,000 miles

* CARB Low NO, Omnibus
extended FUL ~ X2

" EPA is also examining
extending FUL requirements

" More stringent in-use
requirements also increases
demand for real
Aftertreatment durability

Class 8 Durability Increase from 700000 km to 1290000 km by 2031

POWERTRAIN ENGINEERING

swri.org



Speed [rpm] and Torque [Nm]

SCR Durability Challenges

Low Load

Low Load Cycle

3500

2500

1500

500

-500

O bl W 1

350

250

50

Exh Temperature [degC]

L .50

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

—Speed Torque =——Exh Temp

" | ow Temperature Conversion on intermittent high

load transients

" Durability challenge = maintain Low T Conversion

— Chemical poisons

— Sulfur management

— Maintain DOC NO-NO, feed-gas performance

— High T exposure impact on storage
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Other Key System Elements for Aftertreatment Durability
at Low NO,

" Very good DEF evaporation and mixing
— especially for high load, high NOy, conditions with high DEF demand

" Sensors and Actuators
— accurate sensors that are stable over time (NOy and NH;)
— repeatable and reliable DEF and HC dosing

* Good regeneration controls
— Periodic regenerations and deSO, events will be needed

— Preventing excessive localized temperatures is critical to maintain Aftertreatment
Durability
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The Role of Controls in Aftertreatment Durability

Engine — Thermal Management

Operating Conditions [~ ) . I
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T™-1 p T™-1 2 T™-1
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AND co ) Injection }0/ 11 Sensor
SCR1 Avg T > 200°C 5 = }: [ Noz/Nox ]_ NH, Ttz ScR scr
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AND s Observer 0
Fuel Eco SCR1 Avg T > 215°C Warm-Up Exhaust Flow |i NH; Sensor

[Hot](14)

Closed Loop
Controller

[Regular](14)

FE T™-2

NHj3 Slip Model

Model Kinetic
Constants

LO-SCR Avg T < 225°C
AND
SCR1 Avg T < 215°C

* Better thermal management control results * Model-based controls for improved flexibility
in higher system temperatures High Speed Feedback too maintain precision at high NO,

* Aftertreatment less affected by low conversion (> 99.5%)
temperature conversion losses due to Long-term trim to compensate for model-input errors

chemical poisoning Catalyst aging model
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Stage 3 Low NO, Engine Example

2017 Cummins X15 Engine with Eaton CDA Hardware

AGI Exhaust
Manifold

SuperTurbo
w/Turbine
Bypass

- EGR Cooler
. Bypass

Turbine
Bypass

Advanced Low NO, Aftertreatment
(Dual SCR-Dual Dosing)

[l = NOy Sensor 4= DEF Dosing [|= NH; Sensor l= Heated DEF Dosing I = Temp Sensor
. r _— _— 7 _- _— l”_ _________ I

HC Dosing Insulated “One-box” System 2-10.5x4

th |pi )
13x6 (7" Injector) 13x7 & [[h 270 '
© O[]0 m‘ |
= o zoned L AR
o [ ! e el elo] !
N = 1 O Q|
\ I (7] Ij 0 |

Mixer |
| Internal “Switchback” Mixing Tube 2-10.5x10 I

Advanced Cu-zeolite based SCR catalysts for low
temperature performance and high temperature
durability
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Stage 3 Demonstration System
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= Values shown as tested

— 0.002 added to FTP/RMC for
IRAF (regeneration adjustment,

“k-factor”)
— 0.006 added to LLC for IRAF

" Margin available to standard as
calibrated = 0.2% for FTP/RMC
and 0.7% for LLC

" Degradation with Full Aging
(Thermal + Chemical) ~ 0.4%
for FTP/RMC and 1.5% for LLC

" Thermal aging only not sufficient,
especially at lower temperatures
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Stage 3 System - Opportunities for Further Improvement in
Durability of NO, Performance

" Move to traditional DOC + DPF architecture
— Better long-term NO-NO, oxidation (downstream SCR feedgas)
— More robust and likely slightly better CO,

®* Further improvement in downstream mixing
* Small Increase in downstream catalyst volume for high load points

» Catalyst Formulation
— More low temperature chemical poisoning resistance
— Better long-term high temperature selectivity of NH; oxidation

" Further Controls Improvement - Catalyst Aging Model

" Target = Reduce Aging Impact by Half
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Assessing Aftertreatment Durability

" Laboratory Assessment of Durability is Important for Multiple Reasons
— Certification — pre commerce demonstration of system design (Due Diligence)

— Development — aged parts are needed to understand necessary design margins

" Traditional Approaches

— Normal Engine Aging
* Full Useful Life — very time consuming (10000 hours FUL for heavy-duty on-road)

* Partial Life — still time consuming and requires extrapolation which has been shown to be
inaccurate

* These issues will get worse with increased FUL (20000 hours FUL for heavy-duty on-road)
— Hydrothermal Aging (Oven)

* Not representative of real-world aging
* Does not accurately capture key mechanisms for Low NOy

* Accelerated aging methodology that captures all aspects of aging
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DAAAC (Diesel Aftertreatment Accelerate Aging Cycles)
Protocol

— Representative normal oil formulations
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= DAAAC Protocol is a method of generating
representative, accelerated aging cycles based on

field data
’ — Not one specific cycle
— Target is 10X acceleration

— Aftertreatment-centric approach

* Thermal, Chemical, and Physical Aging Incorporated

= Conditions relevant to field

— Aging temperatures are not beyond normal field
maximums

— Regenerations conducted in similar fashion to

—

Aging real application
Cycle
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Stage 3 Low NO, Demonstration
DAAAC-Based Accelerated Aging Cycle (equivalent to 300 field hours)
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= Regeneration 30 min every 100 hours at 600°C zCSF Outlet Temperature

— Regeneration using actual exotherm via 7t injection fuel injection in front of zCSF
= LO-SCR long-term deSOy 30 min every 300 hours at 525°C LO-SCR Inlet T (later modified to 550°C)
= Qil exposure at 10X (combination of modified engine and fuel doping)

= Sulfur exposure at 10X (extra sulfur doped in fuel ~ 2.5ppm SO, in exhaust)
* Chemical exposure — 138 kg oil, 183 g/L sulfur on LO-SCR — peak filter ash load 35 g/L reached every 500 hours

®

1000 Hours DAAAC
Aging

10000 Hours Field
Aging
(700,000 km)
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ECTO-Lab (Burner) Aging Using DAAAC

Correlation with Engine-Based Deterioration Factor
= As Shown Below, the End Result is an ECTO-Lab Aged System That Successfully

Replicates the Performance of the Engine Aged System
— With Oil and Sulfur Exposure
— But DAAAC was conducted in | / [0t the amount of time

* The ECTO-Lab Aged System is Within 1% of the Engine Aged System

=@-ECTO-Lab TP NOx =@=-Engine TP NOx
" 1
S
‘? 0.9
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E os
o
~ 0.7 o— o
= — T
- 0.6
8
= 0.5
g 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
z Equivalent Engine Aging [%]
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SwRI Engine-Based DAAAC Platform

* Highly flexible engine bench used to evaluate age and evaluate diesel aftertreatment
components and sensors

= DAAAC modified bench aging engine for increased oil consumption
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SwRI Burner-Based DAAAC Platform - ECTO-Lab™

* SWRI’s Exhaust Composition Transient Operation
Laboratory™ (ECTO-Lab™) is a Computer Controlled,
Burner—Based Reactor Used to Replicate Stoichiometric
and Lean Exhaust Conditions of Conventional Sl and CI
Engines

" Exhaust Simulation Capabilities Enables Calibration and
Validation Efforts on Full-Size Components

®* Oil Injection and SO, injection for DAAAC acceleration
of chemical poisoning (10X)

" Can be used for DAAAC Aging and OBD Part
Generation

Exhaust Components
Simulated

1 1 1 1 1 1
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Summary and Conclusions

* Aftertreatment Durability is Critical for meeting Future Low NO, Standards

— New Standard are Increasing Demand for Durable High NO, Conversion > 99.5%

* Aftertreatment Durability Requires a Systems Approach
— Catalyst Formulation
— Aftertreatment Design
— Engine Calibration

— Controls

» Stage 3 Demonstration Indicates Potential but More Work Needed on Aftertreatment
Durability to Insure Sufficient Margins

* New Approaches to Accelerated Aging of Diesel Aftertreatment are Needed to Properly
Assess Durability

— SwRI DAAAC Protocol Meets this Need
— Specialized Facilities for DAAAC Accelerated Aging are Available
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