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Definitions

▪ Durability and Robustness are not the same thing

– Proper system design can improve both

▪ Durability describes the resistance of a system to “normal” modes of degradation

– A system can degrade and still be within normal operating limits

– Normal degradation is expected – we can design for this

– Proper design for good durability means understanding field operations and conditions

– Durability can be helped by feedback controls and long-term trim functions

▪ Robustness describes the resistance of a system to “abnormal” modes of degradation

– Generally associated with a system failure

– Abnormal degradation is not expected – we cannot easily predict failures

– Proper design for robustness means understanding potential system failure modes (FMEA)

– Diagnostics are the primary defense against failure in use – spot failures and limit the damage
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Requirements - Simultaneous NOX and CO2 Reduction
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▪ Meeting Upcoming Regulatory Targets will 

Require Simultaneous Reductions on NOX

and CO2

▪ This will increase the requirement for 

Aftertreatment performance and durability

CARB ISOR, June 2020

0.02 g/hp-hr

▪ Aftertreatment Conversion Efficiency 

Demand is > 99.5% at end-of-life

▪ Margin for Loss of Conversion ~ 

0.25% (0.7% at low load)



Requirements - Increased Full Useful Life Periods

▪ CARB Low NOX Omnibus 

extended FUL ~ X2

▪ EPA is also examining 

extending FUL requirements

▪ More stringent in-use 

requirements also increases 

demand for real 

Aftertreatment durability
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CARB Increased FUL Requirements from Low NOX Rule

Class 8 Durability Increase from 700000 km to 1290000 km by 2031



SCR Durability Challenges

▪ Low Temperature Conversion on intermittent high 

load transients

▪ Durability challenge = maintain Low T Conversion

– Chemical poisons

– Sulfur management

– Maintain DOC NO-NO2 feed-gas performance

– High T exposure impact on storage

▪ Very High Conversion at High Flow and NOX Rates

▪ Durability Challenge = maintain high T selectivity of 

NH3 oxidation

– High Temperature Durability

– Slip Catalyst Selectivity

▪ Manage storage capacity changes to prevent excessive 

slip
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Other Key System Elements for Aftertreatment Durability

at Low NOX

▪ Very good DEF evaporation and mixing

– especially for high load, high NOX conditions with high DEF demand

▪ Sensors and Actuators

– accurate sensors that are stable over time (NOX and NH3)

– repeatable and reliable DEF and HC dosing

▪ Good regeneration controls

– Periodic regenerations and deSOX events will be needed

– Preventing excessive localized temperatures is critical to maintain Aftertreatment 

Durability
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The Role of Controls in Aftertreatment Durability

• Model-based controls for improved flexibility

• High Speed Feedback too maintain precision at high NOX

conversion (> 99.5%)

• Long-term trim to compensate for model-input errors

• Catalyst aging model 

• Better thermal management control results 

in higher system temperatures

• Aftertreatment less affected by low 

temperature conversion losses due to 

chemical poisoning

Engine – Thermal Management Aftertreatment – Model Based DEF Dosing Controls 
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Stage 3 Low NOX Engine Example
2017 Cummins X15 Engine with Eaton CDA Hardware
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Advanced Low NOX Aftertreatment 
(Dual SCR-Dual Dosing)

Advanced Cu-zeolite based SCR catalysts for low 
temperature performance and high temperature 
durability



Stage 3 Demonstration System Durability
▪ Values shown as tested

– 0.002 added to FTP/RMC for 

IRAF (regeneration adjustment, 

“k-factor”)

– 0.006 added to LLC for IRAF

▪ Margin available to standard as 

calibrated = 0.2% for FTP/RMC 

and 0.7% for LLC

▪ Degradation with Full Aging 

(Thermal + Chemical) ~ 0.4% 

for FTP/RMC and 1.5% for LLC

▪ Thermal aging only not sufficient, 

especially at lower temperatures
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Stage 3 System - Opportunities for Further Improvement  in 

Durability of NOX Performance

▪Move to traditional DOC + DPF architecture

– Better long-term NO-NO2 oxidation (downstream SCR feedgas)

– More robust and likely slightly better CO2

▪ Further improvement in downstream mixing

▪ Small Increase in downstream catalyst volume for high load points

▪Catalyst Formulation 

– More low temperature chemical poisoning resistance 

– Better long-term high temperature selectivity of NH3 oxidation

▪ Further Controls Improvement - Catalyst Aging Model

▪ Target = Reduce Aging Impact by Half
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Assessing Aftertreatment Durability

▪ Laboratory Assessment of Durability is Important for Multiple Reasons

– Certification – pre commerce demonstration of system design (Due Diligence)

– Development – aged parts are needed to understand necessary design margins

▪ Traditional Approaches

– Normal Engine Aging

• Full Useful Life – very time consuming (10000 hours FUL for heavy-duty on-road)

• Partial Life – still time consuming and requires extrapolation which has been shown to be 
inaccurate

• These issues will get worse with increased FUL (20000 hours FUL for heavy-duty on-road)

– Hydrothermal Aging (Oven)

• Not representative of real-world aging

• Does not accurately capture key mechanisms for Low NOX

▪ Accelerated aging methodology that captures all aspects of aging
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DAAAC (Diesel Aftertreatment Accelerate Aging Cycles) 

Protocol
▪ DAAAC Protocol is a method of generating 

representative, accelerated aging cycles based on 

field data

– Not one specific cycle

– Target is 10X acceleration

– Aftertreatment-centric approach

▪ Thermal, Chemical, and Physical Aging Incorporated

▪ Conditions relevant to field

– Aging temperatures are not beyond normal field 

maximums

– Regenerations conducted in similar fashion to 

real application

– Representative normal oil formulations
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Stage 3 Low NOX Demonstration

DAAAC-Based Accelerated Aging Cycle (equivalent to 300 field hours)

▪ Regeneration 30 min every 100 hours at 600°C zCSF Outlet Temperature

– Regeneration using actual exotherm via 7th injection fuel injection in front of zCSF

▪ LO-SCR long-term deSOX 30 min every 300 hours at 525°C LO-SCR Inlet T (later modified to 550°C)

▪ Oil exposure at 10X (combination of modified engine and fuel doping)

▪ Sulfur exposure at 10X (extra sulfur doped in fuel ~ 2.5ppm SO2 in exhaust)

▪ Chemical exposure – 138 kg oil, 183 g/L sulfur on LO-SCR – peak filter ash load 35 g/L reached every 500 hours
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▪ As Shown Below, the End Result is an ECTO-Lab Aged System That Successfully 

Replicates the Performance of the Engine Aged System

– With Oil and Sulfur Exposure

– But DAAAC was conducted in 1 / 10th the amount of time

▪ The ECTO-Lab Aged System is Within 1% of the Engine Aged System  
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SwRI Engine-Based DAAAC Platform

LFE

Intercooler

Conditioned
Air

Turbo

Exhaust

Dynamometer

SFI

DPF

Heat 
Exchangers

DOC

Variable 
Valve

On / Off 
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NOx / O2

Sensor

Exhaust P 
Control
Valve
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SCR

FTIR

DEF

▪ Highly flexible engine bench used to evaluate age and evaluate diesel aftertreatment 

components and sensors

▪ DAAAC modified bench aging engine for increased oil consumption
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SwRI Burner-Based DAAAC Platform - ECTO-LabTM

▪ SwRI’s Exhaust Composition Transient Operation 
LaboratoryTM (ECTO-LabTM) is a Computer Controlled,  
Burner-Based Reactor Used to Replicate Stoichiometric 
and Lean Exhaust Conditions of Conventional SI and CI 
Engines

▪ Exhaust Simulation Capabilities Enables Calibration and 
Validation Efforts on Full-Size Components

▪Oil Injection and SO2 injection for DAAAC acceleration 
of chemical poisoning (10X)

▪Can be used for DAAAC Aging and OBD Part 
Generation

Exhaust Components 
Simulated

Flow Rate Temperature NOX HC Species O2 H2O
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Summary and Conclusions

▪ Aftertreatment Durability is Critical for meeting Future Low NOX Standards

– New Standard are Increasing Demand for Durable High NOX Conversion > 99.5%

▪ Aftertreatment Durability Requires a Systems Approach

– Catalyst Formulation

– Aftertreatment Design

– Engine Calibration

– Controls

▪ Stage 3 Demonstration Indicates Potential but More Work Needed on Aftertreatment 
Durability to Insure Sufficient Margins

▪ New Approaches to Accelerated Aging of Diesel Aftertreatment are Needed to Properly 
Assess Durability

– SwRI DAAAC Protocol Meets this Need

– Specialized Facilities for DAAAC Accelerated Aging are Available
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